ارزیابی قابلیت ویژگی های زمانی، فرکانسی سیگنال eeg و ویژگی های مستخرج از تبدیل بسته موجک در تفکیک مراحل مختلف خواب با استفاده از شبکه som
نویسندگان
چکیده
سیگنال های زیستی مختلف شامل eeg، eogو emgبه منظور تشخیص اختلالات خواب در آزمایشگاه های خواب ثبت می شوند. تحلیل اطلاعات ثبت شده در زمان خواب به وسیله متخصص خواب، به صورت شهودی انجام می شود. طبقه بندی شهودی مراحل خواب به دلیل طولانی بودن ثبت ها، کار زمان بر و خسته کننده ای است. تحلیل خودکار خواب می تواند این امر را تسهیل کند. مهم ترین گام برای طبقه بندی خودکار مراحل خواب، استخراج ویژگی های مناسب است. در این تحقیق دو دسته ویژگی از سیگنال eegاستخراج شدند: دسته اول ویژگی هایی هستند که از روی ضرایب تبدیل بسته های موجک (wpt) محاسبه شده اند و دسته دوم شامل تعدادی از ویژگی های فرکانسی و یک ویژگی زمانی یعنی دامنه سیگنال eegهستند. در ادامه این دو مجموعه از ویژگی ها به طور مجزا به وسیله شبکه های عصبی somبه فضای دوبعدی نگاشته شدند. نگاشت به دست آمده نشان داد که این ویژگی ها در جدا کردن خودکار مراحل خواب بسیار مفیدند. اطلاعات استخراج شده از eegبیداری و خواب عمیق به دو ناحیه کاملاً مجزا نگاشته شدند. این نگاشت همچنین نشان داد که سیگنالeegبه تنهایی برای جدا کردن کامل مراحل خواب کافی نیست زیرا وقتی اطلاعات مستخرج از سیگنال eegدر خواب remو مرحله 1 از خواب nremبه ناحیه یکسان نگاشت شدند، اطلاعات استخراج شده از سیگنال eegدر مرحله 2 خواب با سایر مراحل همپوشانی دارد که این نتایج منطبق با تعاریف فیزیولوژی مراحل خواب است.
منابع مشابه
ارزیابی قابلیت ویژگیهای زمانی، فرکانسی سیگنال EEG و ویژگیهای مستخرج از تبدیل بسته موجک در تفکیک مراحل مختلف خواب با استفاده از شبکه SOM
سیگنالهای زیستی مختلف شامل EEG، EOGو EMGبه منظور تشخیص اختلالات خواب در آزمایشگاههای خواب ثبت میشوند. تحلیل اطلاعات ثبت شده در زمان خواب بهوسیله متخصص خواب، به صورت شهودی انجام میشود. طبقهبندی شهودی مراحل خواب به دلیل طولانی بودن ثبتها، کار زمانبر و خسته کنندهای است. تحلیل خودکار خواب میتواند این امر را تسهیل کند. مهمتر...
متن کاملحذف خودکار آرتیفکت چشمی از سیگنال های مغزی با استفاده از ویژگی های آماری و زمانی- فرکانسی مولفه های مستقل
مهمترین مشکل در بررسی و پردازش ثبت های الکتروآنسفالوگرام (EEG) حضور انواع سیگنال های ناخواسته (آرتیفکت ها) است که حذف آنها با روش تحلیل مولفه های مستقل از بهترین گزینه های ممکن است. هدف مساله تحلیل مولفه های مستقل جداسازی کور ترکیبی خطی از منابع مستقل است. با اعمال این روش روی سیگنال های مغزی آغشته به آرتیفکت، آرتیفکت ها به صورت مولفه های مستقلی استخراج می شوند. تشخیص خودکار مولفه های مستقل مرب...
متن کاملشناسایی خودکار مراحل خواب از سیگنال EEG تک کاناله با استفاده از تبدیل موجک گسسته و مدل ترکیبی الگوریتم کلونی مورچگان و شبکه عصبی مبتنی بر طبقهبند RUSBoost
طبقهبندی کردن خودکار مراحل خواب به منظور تشخیص دادن به موقع اختلالات و مطالعات مرتبط با خواب امری ضروری است. در این مقاله الگوریتمی مبتنی بر EEG تک کاناله برای شناسایی خودکار مراحل خواب با استفاده از تبدیل موجک گسسته و مدل ترکیبی الگوریتم کلونی مورچگان و نیز شبکه عصبی مبتنی بر طبقهبند RUSBoost ارائه میشود. سیگنال با استفاده از تبدیل موجک گسسته به 4 سطح تجزیه شده و ویژگیهای آماری از هر یک ا...
متن کاملشناسایی خودکار مراحل خواب از سیگنال EEG تککاناله با استفاده از تبدیل موجک گسسته و مدل ترکیبی الگوریتم تبرید و شبکهی عصبی
در سالهای اخیر، استفاده از روشی هوشمند برای تشخیص خودکار مراحل خواب در کاربردهای پزشکی، برای کاهش حجم کار پزشکان در تجزیه و تحلیل دادههای خواب از طریق بازرسی بصری، یکی از چالشهای مهم به حساب میآید. در این مقاله، الگوریتمی مبتنی بر EEG تککاناله برای شناسایی خودکار مراحل خواب، با استفاده از تبدیل موجک گسسته و مدل ترکیبی الگوریتم تبرید و شبکهی عصبی ارائه میشود. سیگنال با استفاده از تبدیل مو...
متن کاملبهبود آشکارسازی مؤلفة P300 با استفاده از تلفیق روشهای مختلف زمانی، فرکانسی و مکانیِ استخراج ویژگی
دراین مقاله سیستمی مبتنی بر بازشناسی آماری الگو جهت تفکیک سیگنالهای حاوی P300 و فاقد آن، ارائه میشود. این سیستم- که بر روی دادگان P300-Speller مسابقات BCI 2005 کار میکند- از چهار بخش اصلی پیشپردازش، استخراج ویژگی، انتخاب ویژگی و طبقهبند تشکیل شده که تأکید اصلی این مقاله بر بخش استخراج ویژگی و بررسی کارایی ویژگیهای مختلف است. در مرحلة استخراج ویژگی، شش دسته ویژگی شامل قطعهبندی هوشمند، ضرا...
متن کاملحذف خودکار آرتیفکت چشمی از سیگنال های مغزی با استفاده از ویژگی های آماری و زمانی- فرکانسی مولفه های مستقل
مهمترین مشکل در بررسی و پردازش ثبت های الکتروآنسفالوگرام (eeg) حضور انواع سیگنال های ناخواسته (آرتیفکت ها) است که حذف آنها با روش تحلیل مولفه های مستقل از بهترین گزینه های ممکن است. هدف مساله تحلیل مولفه های مستقل جداسازی کور ترکیبی خطی از منابع مستقل است. با اعمال این روش روی سیگنال های مغزی آغشته به آرتیفکت، آرتیفکت ها به صورت مولفه های مستقلی استخراج می شوند. تشخیص خودکار مولفه های مستقل مرب...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
فصل نامه علمی پژوهشی مهندسی پزشکی زیستیناشر: انجمن مهندسی پزشکی ایران
ISSN 8006-9685
دوره 4
شماره 2 2010
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023